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1 Uniform Convergence of Series of Functions of Two variables

Results in this section are essential contained in Notes 2. The only difference is now there are
two independent variables, which is necessary for partial differential equations.

Let fn, n ≥ 1, be functions defined on some rectangle R = [a, b]× [c, d]. We consider the series of
functions

∑∞
n=1 fn. This series pointwisely converges to a function F if for each (x, y) ∈ R,

the series of numbers
∑∞

n=1 fn(x, y) converges to the number F (x, y). In other words, for each
(x, y) ∈ R and ε > 0, there is some n0 depending on (x, y) and ε such that

|
n∑
k=1

fk(x, y)− F (x, y)| < ε , ∀n ≥ n0.

It uniformly converges to F if the number n0 can be chosen independent of (x, y), that is,
for ε > 0, there is some n0 such that

|
n∑
k=1

fk(x, y)− F (x, y)| < ε , ∀n ≥ n0, ∀(x, y) ∈ R .

It is clear that uniform convergence implies pointwise convergence but the converse is not true.
Usually we denote the limit function F by

∑∞
n=1 fn. Thus

∑∞
n=1 fn has two meanings, first it

is the notation for an infinite series, and second, the limit of the infinite series when it converges.

We recall two basic properties of uniform convergence.

Theorem 1 (Continuity Theorem). Suppose that each fn is continuous on R and the series∑∞
n=1 fn uniformly converges. Its limit function

∑∞
n=1 fn is continuous on R.

In brief, uniform convergence preserves continuity.

Theorem 2 (Differentiation Theorem). Suppose that (a) the series
∑∞

n=1 fn uniformly con-
verges to F , and (b) all ∂fn/∂x and ∂fn/∂y exist and the series

∑∞
n=1 ∂fn/∂x and

∑∞
n=1 ∂fn/∂y

uniformly converge to G1 and G2 respectively on R. Then ∂F/∂x and ∂F/∂y exist and equal
to G1 and G2 respectively.

This theorem implies the commutative formula:

∂

∂x

( ∞∑
n=1

fn

)
(x, y) =

∞∑
n=1

∂fn
∂x

(x, y) ,

and
∂

∂y

( ∞∑
n=1

fn

)
(x, y) =

∞∑
n=1

∂fn
∂y

(x, y) ,

that is, summation and differentiation are commutative.

Given a series of functions, how can we show that it is uniformly convergent? The most common
method is Weierstrass’ M-Test.
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Theorem 3 (M-Test). Let
∑∞

n=1 fn be a series of functions defined on R. Suppose that there
exists an, n ≥ 1, satisfying (a) |fn(x, y)| ≤ an, for all n and (x, y) ∈ R, and (b)

∑∞
n=1 an < ∞.

Then
∑∞

n=1 fn is uniformly convergent.

Example 1. Show that the series F (x, y) =
∑∞

n=1 fn(x, y) is infinitely differentiable provided
for each differential operator

D =
∂N

∂xm∂yN−m
,

there are some positive C, k, ρ such that

|Dfn(x, y)| ≤ Cnke−n2ρ , ∀(x, y) ∈ R,n ≥ 1 .

We recall that for x ≥ 0,

ex =

∞∑
n=0

xn

n!
≥ xk+2

(k + 2)!
.

(Just keep the (k + 2)-th term). Therefore,

|Dfn(x, y)| ≤ Cnke−n2ρ ≤ C(k + 2)!ρ−k−2
1

nk+2
≡ an .

Clearly,
∑∞

n=1 an = const.
∑∞

n=1 1/nk+2 <∞. It follows from a repeated application of Theorem
2 and the M -Test, F is differentiable up to any order.

2 The Initial-Boundary Value Problem for the Heat Equation

We first consider the initial-boundary value problem for the one dimensional heat equation under
the Dirichlet boundary condition

ut = uxx in [0, π]× (0,∞) ,

u(x, 0) = f(x) in [0, π],

u(x, t) = 0 at x = 0, π and t > 0,

(1)

where, for consistency, f(x) = 0 at x = 0 and π. The physical meaning is, f(x) represents the
initial distribution of temperature along a bar of length π. With its ends keeping at zero degree
all the time, we would like to determine the temperature of the bar at the position-time which
is given by the function u(x, t). We have normalized the diffusion coefficient to 1 and the length
of bar to π. The general case can be reduced to this normalized one by a scaling, see below. See
Text or Wiki under “heat equation” for the derivation of the heat equation and background.

To apply the ideas from Fourier series, we may extend the solution to [−π, π] as an odd function
by setting

U(x, t) = −u(−x, t), x ∈ [−π, 0) .

Observing that U(−π, t) = U(π, t) = u(π, t) = 0, we see that the 2π-periodic extension of U(·, t)
is a continuous, piecewise smooth function when u is of the same type. Consequently, its Fourier
series (which is a sine series) converges uniformly to U(·, t) for each t:

U(x, t) =
∞∑
n=1

bn(t) sinnx .
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To proceed formally, in order this sine series represents a solution to (1), we require

ut − uxx =

∞∑
n=1

(b′n(t) + n2bn(t)) sinnx = 0.

At t = 0,

u(x, 0) =
∞∑
n=1

bn(0) sinnx.

On the other hand, let

f(x) =
∞∑
n=1

Bn sinnx.

(Using f(0) = f(π) = 0, one can extend f to be an odd function and therefore it admits a sine
series representation.) By comparing with the sine series of u, we see that it is necessary to take
bn(0) = Bn. Thus we need to solve

b′n(t) + n2bn(t) = 0, bn(0) = Bn.

This is a standard linear ODE whose solution is given by

bn(t) = Bne
−n2t .

Putting bn(t) back to the sine series for u(x, t), we get a formal solution to (1)

u(x, t) =
∞∑
n=1

Bne
−n2t sinnx. (2)

The boundary condition is formally satisfied as each sinnx vanishes at 0 and π. To show that
(2) really defines a solution, we need to prove that this series converges to some sufficiently
regular function. This can be achieved under a very mild regularity assumption on the initial
function f .

Theorem 4 Consider (1) where f ∈ R[0, π]. The series

u(x, t) =

∞∑
n=1

Bne
−n2t sinnx (3)

where Bn is given by

f(x) =
∞∑
n=1

Bn sinnx,

or equivalently,

Bn =
2

π

∫ π

0
f(x) sinnx dx,

defines a function u which is infinitely differentiable in [0, π] × (0,∞) and solves (1). It also
satisfies u(0, t) = u(π, t) = 0 for t > 0.

Proof. Consider the series
∑∞

n=1 fn where fn(x, t) = Bne
−n2t sinnx. The partial derivatives of

fn are of the form Bnn
ke−n

2t sinnx or Bnn
ke−n

2t cosnx for some k depending on the order of
differentiation. As f is integrable and Bn is the Fourier coefficients of f , there is some M such
that |Bn| ≤M for all n. Therefore, for all (x, t) ∈ [0, π]× [t0,∞) for a fixed t0 > 0, we have the
estimate

|fn(x, t| ≤ |Bnnke−n
2t sinnx| ≤Mnke−n

2t0 ,
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(sinnx or replaced by cosnx). It follows from Example 1 (taking ρ = t0) that the function defined
by u(x, t) =

∑∞
n=1Bne

−n2t sinnx is infinitely many times differentiable on [0, π] × [t0,∞) for
any t0 > 0. Also, for each fixed (x, t), t > 0, by Theorem 3,

ux(x, t) =
∑
n

nBne
−n2t cosnx ,

uxx(x, t) =
∑
n

(−n2)Bne−n
2t sinnx ,

and
ut(x, t) =

∑
n

(−n2)Bne−n
2t sinnx.

We conclude that ut = uxx holds in [0, π]× (0,∞). Clearly it also satisfies the boundary condi-
tions.

To show that the initial value is achieved by the solution, we need to impose more regularity on
the initial function.

Theorem 5. Let f be a continuous, piecewise smooth function satisfying f(0) = f(π) = 0 on
[0, π]. Then the solution of (1) constructed in Theorem 4 satisfies

lim
t→0

u(x, t) = f(x) , ∀x ∈ [0, π].

Proof. Consider again the terms fn(x, t) = Bne
−n2t sinnx. If we can show that

∑
|Bn| < ∞,

in view of
|fn(x, t)| ≤ |Bn|e−n

2t| sinnx| ≤ |Bn|,

we can use
∑
|Bn| as a majorant to show that u(x, t) =

∑∞
n=1 fn =

∑∞
n=1Bne

−n2t sinnx
is uniformly convergent on [0, π] × [0,∞) and hence it is continuous there. Using u(x, 0) =∑∞

n=1Bn sinnx, we conclude limt→0 u(x, t) = u(x, 0) = f(x) .

It remains to show
∑
|Bn| <∞. By∑
|Bn| =

∑ 1

n
× n|Bn| ≤

1

2

(∑ 1

n2
+
∑

n2B2
n

)
,

it suffices to verify
∑
n2B2

n < ∞. As f is piecewise smooth, f ′ is piecewise continuous and
hence integrable. By Bessel’s inequality and the fact that the Fourier coefficients of f ′ are equal
to nBn, ∑

n2B2
n ≤

2

π

∫ π

0
f

′2(x) dx <∞,

done.

For the general case, consider
ut = κuxx in [0, l]× (0,∞) ,

u(x, 0) = f(x) in [0, l],

u(x, t) = 0 at x = 0, l and t > 0,

(4)

Observe that u(x, t) solves (4) if and only if the function ũ(x, t) = u(lx/π, l2t/κπ2) solve (1).
From this we combine Theorems 4 and 5 to get
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Theorem 6 Consider (4) where f is continuous, piecewise smooth and vanishes at endpoints.
The series

u(x, t) =
∞∑
n=1

Bne
−(nπ

l
)2κt sin

nπx

l
,

where Bn is given by

f(x) =

∞∑
n=1

Bn sin
nπx

l
,

or equivalently,

Bn =
2

l

∫ l

0
f(x) sin

nπx

l
dx,

defines a function u continuous in [0, π] × [0,∞) and infinitely differentiable in [0, π] × (0,∞)
which solves (4).

We draw two interesting properties from these theorems. First, the solution u(x, t) → 0 as
t → ∞, that is, the temperature eventually dies down to zero. Second, the solution has an
instant smoothing feature. Our given initial function is piecewise smooth and continuous, but
the solution u(x, t) becomes infinitely many times differentiable for every t > 0. This is easily
seen from the representation formula where the coefficients Bne

−n2t are rapidly decreasing. This
reflects the heat distribution is a diffusion process where an instant average-out effect takes place.


